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assisting studies of convection in porous media is the theory
of stability, whether by linear instability theory, nonlinearWe develop the compound matrix method and the Chebyshev

tau method to be applicable to linear and nonlinear stability prob- energy stability theory, or weakly nonlinear theory. Many
lems for convection in porous media, in a natural way. It is shown recent studies in this field concentrate on applications; see,
how to obtain highly accurate answers to problems which may be e.g., Nield [14], Nield et al. [16], and the many references
stiff, and spurious eigenvalues are avoided. A detailed analysis is

in the books of Nield and Bejan [15] and Straughan [20, 21].provided for a porous convection problem of much current interest,
Stability theory is thus very important. Almost invariablynamely convection with a horizontally varying temperature

gradient. Q 1996 Academic Press, Inc. stability calculations involve determining eigenvalues and
eigenfunctions and few of the associated eigenvalue prob-
lems are solvable analytically. Hence accurate and efficient

1. INTRODUCTION numerical eigenvalue/eigenfunction solvers are needed. In
this paper we describe a new implementation of two ex-

Convective flow of a fluid in a porous medium is a subject isting techniques. These are the compound matrix method
driven by the immense variety of applications from which it (Drazin and Reid [4], Ng and Reid [11–13]) and the
arises. These applications are in biological, environmental, Chebyshev tau method (Fox [5], Orszag [17]); we show how
geophysical, and industrial contexts, to mention some. For one may apply these techniques directly to the relevant
example, convective motion of air in a layer of snow may equations of porous medium stability theory rather than
be modelled by multiphase convection in a porous medium, convert to higher order equations or do other tricks. Thus,
Powers et al. [19]. The curious formation of stones into we show how the two techniques may be logically and
regular patterns in what is known as polygonal ground naturally applied to many eigenvalue problems of linear
formation is believed to have its origins in thermally driven and nonlinear stability theory in porous media convection.
porous convection; see, e.g., Straughan [20, Chap. 7], and The methods we describe are very accurate, relatively easy
the references therein. The thawing of the permafrost layer to implement, and designed to handle variable coefficients
below the sea bed off the coast of Alaska is a two phase and to avoid roundoff error and the appearance of spuri-
convection in porous media process involving salt transport ous eigenvalues.
and thermal convection; see, e.g., Straughan [20, Chap. 7], To motivate the methods we briefly consider the equa-
and the references therein. Other examples of convective tions for convection in a porous medium. A specific exam-
motion in porous media may be found in thermally driven ple is included in Section 4, which investigates horizontal
cavities near the Earth’s surface; or the spread of radioac- gradient convection, this example being selected to illus-
tive material which has leaked, the convection then being trate the complexity of equations we can handle. The stan-
due to dissipation by a heat source. There are many other dard equations for simple convective fluid motion in a
examples of convection in porous media which may be porous elastic solid without other effects, may be written
found in texts, e.g., Nield and Bejan [15], Straughan [20, (cf. Straughan [20, p. 57])
21].

One technique which has proved extremely valuable in
p,i 5 2

e
k

vi 2 di3r0g(1 2 a[T 2 T0]), (1.1)
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viscosity, k is the permeability of the porous medium, a is higher order. Nevertheless, the basic ideas we study here
are encompassed in (1.7). We stress that we do not convertthe coefficient of thermal expansion of the fluid, g is gravity,

r0 (constant) is the density which is governed by the Bous- (1.7) to a fourth-order system; it is better to work with the
natural equations for the velocity and temperature fieldssinesq approximation, and k is the thermal diffusivity. Stan-

dard indicial notation, together with the Einstein summa- directly. Interestingly, Gardner et al. [6] have advocated a
Chebyshev numerical scheme which reduces a fourth-ordertion convention is employed. If these equations are

considered in the layer hz [ (0, d)j 3 R2 and the tempera- equation to two second-order ones; for porous convection
problems one is naturally faced with such a system. Ourtures on z 5 0, d are prescribed and constant with values

Tl , Tu , respectively, and the normal component of velocity paper deals with a different issue to that of Gardner et al.
[6], however, and we return to this in Section 4. Unlikevanishes on the planes z 5 0, d, then the conduction solu-

tion is Gardner et al. [6] we do not need systems of fourth-order
equations; in porous convection problems we deal directly
with (possibly many) systems of second-order equations.T 5 2bz 1 Tl , vi 5 0. (1.4)
By dealing directly with only second-order equations we
encounter only second-order differentiation operators andUnder a suitable nondimensionalisation the perturbations
the matrices in the Chebyshev method grow no more thanto (1.4) may be shown to satisfy (see, e.g., Straughan [20,
O(N3), where N is the number of polynomials. This isp. 57])
an important factor leading to accuracy because roundoff
error is avoided. If a fourth-order differentiation operator

f,i 5 Rudi3 2 ui , is involved then the growth is O(N7), for sixth-order deriva-
tives the growth is O(N11), and so on; for Couette andui,i 5 0, (1.5)
Poiseuille like problems, which for high Reynolds number

u,t 1 uiu,i 5 Rw 1 Du, calculations 500 or more polynomials may be required, this
is a serious problem. Restricting to second-order systems is
a major asset in these problems even if multi-componentwhere (u, u, f) is the perturbation to the steady solution
diffusion or multi-layer flows are under investigation, as(v, T , p), w 5 u3 , and where R2 is the Rayleigh number.
studied by Dongarra et al. [6] and Straughan andEquations (1.5) hold in the infinite three-dimensional
Walker [23].layer contained in 0 , z , 1, and the boundary condi-

To conclude the introduction we argue that as poroustions are
convection problems are becoming more complex it is use-
ful to have two entirely different but nevertheless veryw 5 0, u 5 0, on z 5 0, 1. (1.6)
accurate and efficient methods at ones disposal. When
coefficients are complex and functions of the spatial vari-

For Eqs. (1.5), (1.6) the theory of linear instability and ables and when the eigenvalues and eigenfunctions are
nonlinear stability yield the same critical Rayleigh number complex, as they are, for example, in penetrative convec-
which is a strong result. If one assumes the perturbations tion in an anisotropic porous medium with principal axis
satisfy a plane tiling periodic (x, y) planform then in terms neither horizontal nor vertical Straughan and Walker [22])
of a wave number a, system (1.5) gives rise to the eigen- then an independent check is extremely valuable.
value problem

2. THE COMPOUND MATRIX METHOD(D2 2 a2)W 1 Ra2Q 5 0,
(1.7)

(D2 2 a2)Q 1 RW 5 0,
The compound matrix method is designed to avoid

round off error and works well if the system of differential
together with the boundary conditions equations is stiff. Its general history may be found in Drazin

and Reid [4] and Ng and Reid [11]; these writers pay
W 5 0, Q 5 0, z 5 0, 1, (1.8) particular attention to a single fourth-order equation and

the technique is extensively developed for this case with
attention being given to the famous Orr–Sommerfeldwhere D 5 d/dz, and W, Q denote the z-dependent parts

of w, u. Of course, (1.7), (1.8) may be solved exactly; how- problem, an equation well known for its difficulties. This
method has been extended to an inhomogeneous fourth-ever, they show why we are interested in studying an eigen-

value problem for a system of second-order differential order equation in Ng and Reid [12], and to sixth-order
equations in Ng and Reid [13]. The method as advocatedequations. In general, stability studies in porous convection

problems yield more complicated systems, possibly of by Drazin, Ng, and Reid has been employed very success-
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fully in several of the references quoted in this work to u9 5 Bu,
determine eigenvalues. One of the objectives of this work
is to show how the ideas of Ng and Reid [11] may be where B is the 6 3 6 matrix given in terms of the ai by Ng
extended directly to systems governing porous flow stabil- and Reid [11, p. 127].
ity in a natural manner to find eigenfunctions. The eigen- With system (2.1) it is more natural to work with the
functions in turn yield streamlines and isotherms and so 2 3 2 minors arising from w and u, i.e.,
are very useful.

Consider the general linear system
y1 5 w1w92 2 w2w91 (5u1),

w0 5 a1w9 1 a2w 1 a3u9 1 a4u,
(2.1)

y2 5 w1u2 2 w2u1 ,

u0 5 b1w9 1 b2w 1 b3u9 1 b4u, y3 5 w1u92 2 w2u91 ,
(2.4)

where a prime denotes differentiation with respect to x (in y4 5 w91u2 2 w92u1 ,
the porous convection case this is the variable z), a1 , ...,
a4 , b1 , ..., b4 , are known coefficients which may depend y5 5 w91u92 2 w92u91 ,
on x, and may be complex, and x [ (0, 1). One or more
of the coefficients contains an eigenvalue, s say. For defi- y6 5 u1u92 2 u2u91 .
niteness, we limit the present discussion to the boundary
conditions The y’s satisfy the system

w 5 u 5 0 at x 5 0, 1, (2.2) y9 5 Ay, (2.5)

although this is not necessary; other boundary conditions where A (which is different from the B matrix of Ng and
may be considered. Reid [11]) is given by

We could always eliminate one or other dependent vari-
able in (2.1) and arrive at a single equation; for example,
we here use w,

wIV 5 a1w- 1 a2w0 1 a3w9 1 a4w. (2.3)
A 51

a1 a4 a3 0 0 0

0 0 1 1 0 0

b1 b4 b3 0 1 0

0 a2 0 a1 1 2a3

2b2 0 a2 b4 a1 1 b3 a4

0 2b2 0 2b1 0 b3

2 .
A similar equation may be derived for u and then the
theory of Ng and Reid [11] may be applied. The com-
pound matrix method for this equation introduces the
variables

The eigenvalue(s) s may be found by integrating (2.5)
u1 5 w1w92 2 w2w91 , from 0 to 1 with the initial condition

u2 5 w1w02 2 w2w01 ,
y5(0) 5 1, (2.6)

u3 5 w1w-2 2 w2w-1 ,
and we iterate on the final condition

u4 5 w91w02 2 w92w01 ,
y2(1) 5 0, (2.7)

u5 5 w91w-2 2 w92w-1 ,

to derive s to some preassigned degree of accuracy.
u6 5 w01w-2 2 w02w-1 , While the determination of s is straightforward it is not

so clear how to find the corresponding eigenfunction (w,
u). We could always convert to two fourth-order equationsand works directly with these variables. One thing this

does is that it avoids roundoff errors associated with inter- and use the theory of Ng and Reid [11] twice. However,
it is preferable to avoid the need to construct the matrixpolating on the zero of a determinant. The variables ui

satisfy the differential equation B and the system for u. When the coefficients in (2.1)
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are complicated this is a messy process. A self-contained u2 5 a1 y1 1 a3 y3 1 a4 y2 ,
(2.13)process is desirable. It is worth pointing out that while

u4 5 2a2 y1 1 a4 y4 1 a3 y5 .(1.7) is very easy to handle, if we include effects like anisot-
ropy and penetrative convection, then strong boundary

Thus, Eq. (2.11) is the same as Eq. (2.10).layers may form and the system becomes stiff.
It would be nice to simply integrate system (2.9). How-Let us observe that from (2.4) the y’s satisfy the equation

ever, y2 5 0 at x 5 0 and x 5 1. Fortunately, the method(cf. Ng and Reid [11])
employed above yields a direct way to calculate the coeffi-
cients we need in (2.10). The point is that in integratingy1 y6 2 y2 y5 1 y3 y4 5 0. (2.8)
(2.5) we find the y’s. We do not want to have to calculate
B and then recalculate the u’s. Hence, we may directlyIn fact, an analogous equation holds for the u’s (Ng and
calculate w from Eq. (2.10) by integration backward fromReid [11]). The theory of Ng and Reid [11] shows that the
1 to 0, with a knowledge of the y’s; i.e., u2 , u4 are deter-eigenfunction w to Eq. (2.3) may be found by backward
mined from (2.13). Obviously, an analogous procedureintegration of their equations (12)–(15). Ng and Reid [11]
exists for finding u(x).study the asymptotic behaviour of w near x 5 0 and due

to this there is a need to integrate in the 1 to 0 direction;

3. A CHEBYSHEV TAU METHOD FOR SYSTEM (2.1)
however, they also show that their Eq. (12) is preferable
due to the asymptotic behaviour.

For system (2.5) we may use Eqs. (12) and (14) of Ng Let us begin by rewriting (2.1) and by defining the opera-
and Reid [11] to yield a first-order system from which we tors L1 and L2 by
can, in principle, determine the eigenfunctions directly.
The system in our case is L1u 5 u0 2 a0u 2 a1v 2 a2u9 2 a3v9,

(3.1)
y2w9 2 y1u 2 y4w 5 0,

(2.9)
L2v 5 v0 2 b0u 2 b1v 2 b2u9 2 b3v9.

y2u9 2 y3u 1 y6w 5 0.
The coefficients ai , bi may depend on x and be complex,
and in addition the eigenvalue s appears in one or moreOf course, we must verify (2.9) is equivalent to Eq. (12)

of Ng and Reid [11] which in our notation is coefficients. We study the system

L1u 5 0,
(3.2)

u1w0 2 u2w9 1 u4w 5 0. (2.10)

L2v 5 0,To establish the equivalence of the above two systems we
differentiate (2.9)1 to obtain

on (21, 1), together with the boundary conditions

y2w0 1 (y92 2 y4)w9 2 y94w 2 y1u9 2 y91u 5 0. u 5 v 5 0 at x 5 61. (3.3)

Next substitute for u9 from (2.9)2 and then eliminate u In traditional implementations of the Chebyshev tau
from the resulting equation by using (2.9)1 to obtain (pro- method spurious eigenvalues have appeared and recent
vided y1 , y2 ? 0 in (0, 1)) articles have been concerned with the removal of these

(see Gardner et al. [6], Lindsay and Ogden [9], Zebib
y2

2 y1w0 1 (y1 y2 y92 2 y4 y1 y2 2 y2
2 y91 2 y1 y2 y3)w9

(2.11)
[24–26]). Gardner et al. [6] write that the spurious eigen-
values are due to singularities in the matrix associated

1 (y2
1 y6 2 y94 y1 y2 1 y91 y2 y4 1 y1 y3 y4)w 5 0. with the eigenvalue which arises in the discrete represen-

tation of a differential equation. They concentrate on a
fourth-order equation or a system of fourth-order equa-The coefficient of w0 is y2

2u1 . By using (2.5) we find the
tions. Their idea is to reduce a fourth-order equation tocoefficients of w9 and w are, respectively,
two second-order ones. They remove boundary condition
rows and effectively reduce everything to a single equa-2y2

2(a1 y1 1 a4 y2 1 a3 y3),
(2.12) tion for the discrete variable, Gardner et al. [6, Eq.

y2
2(2a2 y1 1 a4 y4 1 a3 y5). (3.9b)]; if one goes carefully through their work it is

not clear to the present writers that this procedure is
not effectively equivalent to the original one of OrszagBut, u2 5 w1w02 2 w2w01 and u4 5 w91w02 2 w92w01 and, upon

substitution from (2.1), we find [17], with columns removed due to boundary conditions,
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because of the matrix B1Q in (3.9b). This matrix has,
(L2v, TN1j) 5 t̂j iTN1j i2, j 5 1, 2,in fact, O(N 6) growth and so care must be taken with

round off error. Nevertheless, the paper of Gardner et
are useful error indicators and may indicate when spuriousal. is very interesting and inspired the work of the present
eigenvalues are present (cf. Gardner et al. [6]). Instead,section. Use of Chebyshev polynomials in hydrodynamic
four further conditions are found from the boundary condi-stability problems has been advocated for several years,
tions which since Tn(61) 5 (61)n (Orszag [17]) giveand the very fundamental paper of Orszag [17] has been

a cornerstone in the field.
We now describe the procedure for finding eigenvalues ON12

n50
(21)nan 5 0, ON12

n50
an 5 0,

(3.7)
and eigenfunctions to (3.2), (3.3), although we stress other
boundary conditions may be handled, and higher order
systems may be dealt with by the same technique. Thus, ON12

n50
(21)nbn 5 0, ON12

n50
bn 5 0.the method is applicable to many studies of stability in

both porous media and hydrodynamics.
The underlying idea is to write u, v as a finite series of

Thus, (3.6) and (3.7) yield a system of 2(N 1 3) equationsChebyshev polynomials
for the 2(N 1 3) unknowns ai , bi , i 5 0, ..., N 1 2. In this
way, as Orszag [17] succinctly explains, the high frequency
behaviour of the solution is determined not by the dynami-u 5 ON12

k50
akTk(x),

(3.4) cal equations but rather by the boundary conditions. For
ease of exposition we suppose ai , bi are constant, although
in Section 4 we deal with situations where this is not thev 5 ON12

k50
bkTk(x),

case; the general procedure necessary when ai , bi are func-
tions of x may be developed with the aid of Orszag’s [17
p. 702] relations.although the logic is that (3.4) are truncations of an infinite

Since the derivative of a Chebyshev polynomial is aseries. Due to the truncation, instead of solving (3.2)
linear combination of lower order Chebyshev polynomials,one solves

L1u 5 t1Tn11 1 t2TN12 ,
(3.5) T 9n 5H2n(Tn21 1 ? ? ? 1 T1), n even,

2n(Tn21 1 ? ? ? 1 T2) 1 nT0 , n odd,
(3.8)

L2v 5 t̂1TN11 1 t̂2TN12 ,

where t1 , t2 , t̂1 , t̂2 are parameters which may be used to an expression which may be calculated from Eq. (A2) of
measure the error associated with truncation in (3.4) (cf. Orszag [17], then remembering (3.6) are truncated versions
the Lanczos technique and the error analysis of Fox [5]). of infinite expressions, (3.6) may be written (cf. Gardner

To obtain a resolvable problem the inner product with et al. [6, p. 141]; Orszag [17, p. 693],
Ti is taken in (3.5) in the weighted L2(21, 1) space with
inner product a(2)

i 2 a0ai 2 a1bi 2 a2a
(1)
i 2 a3b

(1)
i 5 0, i 5 0, ..., N,

(3.9)
b(2)

i 2 b0ai 2 b1bi 2 b2a
(1)
i 2 b3b

(1)
i 5 0, i 5 0, ..., N,

( f, g) 5 E1

21

fg

Ï1 2 x2
dx,

where the new coefficients are given by

and associated norm i?i. Since the Chebyshev polynomials
are orthogonal in this space, from (3.5) we obtain 2(N 1

a(1)
i 5

2
ci

Op5N12

p5i11
p1i odd

pap , (3.10)1) equations

(L1u, Ti) 5 0, i 5 0, 1, ..., N,
(3.6) a(2)

i 5
1
ci

Op5N12

p5i12
p1i even

p(p2 2 i 2)ap , (3.11)
(L2v, Ti) 5 0, i 5 0, 1, ..., N.

The further conditions from (3.5), with an analogous representation for b(1)
i , b(2)

i , and with
c0 5 2, ci 5 1, i 5 1, 2, ... . If (3.9) are coupled together
with (3.7) we may obtain a matrix equation(L1u, TN1j) 5 tj iTN1j i2, j 5 1, 2,
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Ax 5 sBx, u9 2 w 5 t1TN11

w9 2 G1 5 t2TN11
with x 5 (a0 , ..., aN12 , b0 , ..., bN12)T. However, the B

v9 2 p 5 t3TN11matrix is inevitably singular due to the way the boundary
condition rows are added to A. This point is easily

p9 2 G2 5 t4TN11overcome; indeed the device is that used by Haidvogel
and Zang [7] (fourth line after Eq. (7)) in another

and then obtain error indicators ascontext. To see this observe that from (3.7), we easily
eliminate aN11 , aN12 , bN11 , bN12 . For, suppose for defi-

(u9 2 w, TN11) 5 t1iTN11i2
niteness N is odd, then

(w9 2 G1 , TN11) 5 t2iTN11i2

aN11 5 2(a0 1 a2 1 ? ? ? 1 aN21)
(3.12) (v9 2 p, TN11) 5 t3iTN11i2

aN12 5 2(a1 1 a3 1 ? ? ? 1 aN)
(p9 2 G2 , TN11) 5 t4iTN11i2.

with analogous expressions involving the b’s, and thus the
While the technique advocated in [9] is not without interestN 1 1 and N 1 2 rows of D, D2 may be removed and the
we do not believe the method by itself leads to removal ofN 1 1, N 1 2 columns eliminated using (3.12). This yields
spurious eigenvalues. For example, if we use it to solve(N 1 1) 3 (N 1 1) matrices D, D2, and the matrix problem
the problemwhich results does not suffer from B being singular due to

zero boundary condition rows.
y0 1 ly 5 0, x [ (21, 1),The upshot is (2.2) is replaced by a system

y(21) 5 y(1) 5 0,
Ax 5 sBx (3.13)

then the recipe of [9] with
where x 5 (a0 , ..., aN , b0 , ..., bN). Explicit details of A, B
are given in Section 4 when the examples illustrate more

y 5 ON11

n50
ynTn(x), v 5 ON11

n50
vnTn(x),clearly the method. The eigenvalues of (3.13) are found

most efficiently using the QZ algorithm of Moler and
Stewart [10] and this is implemented in many standard

andlibraries, e.g., the routines ZGGHRD, ZHGEQV, and
ZTGEVC of the LAPACK Fortran subroutine library,

y9 5 v, v9 5 2ly,Anderson et al. [1], or the routines F02BJF, F02GJF of
the NAG library. Care must be taken with this implementa-

requires the solution oftion if B is singular due to the nature of the differential
system (3.2). Also, the eigenfunctions are efficiently com-
puted via the QZ algorithm, with further details being
provided explicitly in Section 4.

It is pertinent at this point to mention the work of Lind- 1
D 2I

BC1 0 ? ? ? 0

0 D

BC2 0 ? ? ? 0
2Sy

v
D5 l1

0 0

0 ? ? ? 0 0 ? ? ? 0

2I 0

0 ? ? ? 0 0 ? ? ? 0
2Sy

v
D ,say and Ogden [9] who develop a heuristic method for

solving an arbitrary system of differential equations, gener-
alizing the ideas of Gardner et al. [6]. Applied to (3.2) the

(3.14)

idea of [9] is to rewrite the two equations as

where BC1, BC2 refer to the boundary condition rowsu9 5 w

w9 5 a0u 1 a1v 1 a2w 1 a3p ; G1 ON11

n50
(21)nyn 5 0, ON11

n50
yn 5 0.

v9 5 p

p9 5 b0u 1 b1v 1 b2w 1 b3p ; G2 . Using N 5 18 we found of the 40 b values produced using
the QZ algorithm, 21 were with b 5 0. However, from the
remaining list of 19 the smallest eigenvalue given by theAlthough a tau method is not explicitly discussed in [9]

one could solve method of [9] we computed as
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l 5 20.137406 3 1018. (3.15) in Tables I and II are obtained using the compound
matrix method, together with secant and quasi-Newton
techniques in the optimization. A Burlisch and StoerThe next in the list is the correct one. Upon closer inspec-

tion, we found the QZ algorithm returns extrapolation solver and a Runge–Kutta–Fehlberg tech-
nique were employed to numerically integrate the ordi-
nary differential equations. However, all values, includingar 5 20.261515 3 103

those for the eigenfunctions, have been checked using
the Chebyshev technique and the agreement is good.and
The degree of accuracy we obtain is largely controlled
by the optimization routines. We can obtain five or sixb 5 0.190322 3 10214

decimal places of accuracy in a reasonable amount of
time and, by demanding smaller tolerances, greater accu-(to six d.p.) for the value (3.15), where ar is the real part

of the variable a produced. This behaviour is repeated for racy may be achieved, although at the expense of comput-
ing time. However, the accuracy of the two methods isother values of N. For example, for N 5 8 we find 11 b’s

are zero and one set of ar , b, l such that compared in detail in Section 4; it is seen that excellent
agreement is established.

ar 5 0.581989 3 102, b 5 0.114396 3 10214,

4. CONVECTION IN A POROUS MEDIUM WITHl 5 0.508751 3 1017.

INCLINED TEMPERATURE GRADIENT
With N 5 17, 19, and 28 we find, respectively, 20, 22, 31
of the b’s are zero and Nield [14] studies convection in a layer of porous mate-

rial when there is a temperature gradient in the vertical
ar 5 20.223482 3 103, 0.277560 3 103, 0.610930 3 103, direction but that gradient varies as one traverses the layer

in one of the horizontal directions, the x-direction say.b 5 0.125559 3 10214, 0.595272 3 10215, 0.857495 3 10214,
From our point of view this is an interesting example since
the equations involve complex coefficients which dependl 5 20.177989 3 1018, 0.466274 3 1018, 0.712460 3 1017.
on the z variable. Numerically we find this is a problem
which for certain parameter ranges is very sensitive toNo such spurious behaviour was found when the D2

small changes in parameters; hence it is a good test of amethod, i.e., that which is equivalent to the one leading
method’s accuracy.to (3.13), was employed. Clearly care must be exercised

The work of Nield [14] is extended in Nield et al. [16]with the method of [9]; this technique is further investi-
who investigate the analogous problem when temperaturegated (among others) in [2].
and salt fields are present. The equations may be conve-With the technique of [9] the boundary condition rows
niently found in Nield and Bejan [15, p. 257], but wedo not occur in a way which allows the removal of the
take them from Nield [14] who employs a differentyN11 , vN11 terms (unless the boundary conditions are very
nondimensionalisation. The layer of porous medium isspecial). Moreover, the B matrix will always be singular.
subject to temperature fields on the boundaries z 5 6H/The numerical routine behind [9], i.e., the QZ algorithm,
2 withis employed to filter out those bi which are zero. The QZ

algorithm does not yield l directly, rather a set ai , bi and
if bi ? 0, l 5 ai/bi gives the correct eigenvalues. The QZ T 5 T0 7 As DT 2 bT x,
algorithm may be used in this way if one is careful, although
both the ai and bi should not both be close to zero together, where DT is the temperature drop over the layer in the
and as our example shows, consideration of the ai and bi vertical direction and bT is a constant. In terms of vertical
is essential. and horizontal Rayleigh numbers RV , RH , which are physi-

We now illustrate the use of the compound matrix cal parameters which are prescribed, the temperature
and Chebyshev tau methods in an important new physical boundary conditions in nondimensional form are
problem of convection in a porous medium. This high-
lights the ability of these techniques to deal with coeffi-

T 5 7AsRV 2 RHx, z 5 6As.cients dependent on the vertical spatial variable and
complex coefficients, although more general boundary
conditions and systems of order higher than 4 which These boundary conditions lead to a steady solution in

which the horizontal velocity is not zero; the steady solu-occur naturally in practical porous convection problems
can also be accommodated. The critical values presented tion has form
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U 5 RHz,
(4.1) c 5 2RV 2

R2
H

12
(1 2 6z 1 6z2),

T 5 2RVz 1 sfA R2
H(z 2 4z3) 2 RHx,

where we have set (4.4) in the domain z [ (0, 1), sowith z [ (2As, As).
The non-dimensionalised perturbation equations from

U 5 RH(z 2 As).this solution, written in normal mode form with k, m being
the x and y wavenumbers, and a2 5 k2 1 m2, are

System (4.4) is integrated subject to the initial condition
(D2 2 a2)W 1 a2Q 5 0,

(4.2) y5(0) 5 1
[D2 2 a2 2 is 2 ikU(z)]Q 1

ik
a2 RHDW 2 (DT )W 5 0,

and final conditions
z [ (2As, As), and these equations are to be solved subject to

y2(1) 5 y8(1) 5 0.W 5 Q 5 0, z 5 6As. (4.3)

The basic solution (4.1) is referred to by Nield [14] as The Chebyshev scheme of Section 3 applied to (4.2);
Hadley flow. (4.3) reduces to solving

Nield [14] argues that s 5 0 is sufficient, whereas we fix
RV and RH and solve for s. We minimize in k and m Ax 5 sBx (4.5)
using a quasi-Newton routine to find the critical Rayleigh
number. For fixed RV we find that value of RH such that where now x 5 (W0 , ..., WN , Q0 , ..., QN), and the matrices
sr 5 0 (s 5 sr 1 isi). We only treat the case where RV is A and B are given by
in the decreasing phase of Nield’s [14] analysis as this is
where the eigenvalues/eigenfunctions behave most badly.
We do confirm Nield’s findings that si 5 0 at criticality. A 51

D2 2 a2I a2I

ik
a2 RHD 1 SRV 2

R2
H

24D I 1
R2

H

8
P D2 2 a2I 2 AsikRHM2The compound matrix equations arising from (4.2) are

(we give the 12 equations which arise from the six com-
plex equations)

B 5S0 0

0 I
D .

y91 5 2a2y2 ,

y92 5 y3 1 y4 , In the expression for A, P is the matrix which arises from
the Chebyshev representation of z2. In the code we arrange

y93 5y5 1 (a2 1 sr)y2 2 (si 1 kU)y8 1
k
a2 RH y7 , for (4.5) to involve N 3 N matrices, so

P11 5 Pii 5 As, i 5 3, ..., N; P22 5 Df;y94 5 y5 1 a2y2 ,

Pi,i12 5 Af, i 5 1, ..., N 2 2;y95 5 (a2 1 sr)y4 2 (si 1 kU)y10 2 cy1 1 a2(y3 2 y6),
P31 5 As; Pi12,i 5 Af i 5 2, ..., N 2 2.

y96 5 2
k
a2 RH y10 2 cy2 ,

(4.4) D2 is the second differentiation matrix incorporating
boundary conditions of type (4.3). It is worth observingy97 5 2a2y8 ,
that B above is singular and we find one half of the bi

y98 5 y9 1 y10 , given by the QZ algorithm are zero (as we should).
We find results in broad qualitative agreement with those

y99 5 y11 1 (a2 1 sr)y8 1 (si 1 kU)y2 2
k
a2 RH y1 , of Nield [14], although the exact quantitative values we

find are different. This is likely to be due to the fact that
Nield employs a Galerkin argument. However, the differ-y910 5 y11 1 a2y8 ,
ences are not major and we do agree with the streamline

y911 5 (a2 1 sr)y10 1 (si 1 kU)y4 2 cy7 1 a2(y9 2 y12), predictions at criticality. For the parameter range we have
chosen, the eigenvalues and eigenfunctions are very sensi-

y912 5
k
a2 RH y4 2 cy8 . tive to changes in the parameters. Nield [14] notes there

is instability even when RV 5 0, i.e., when there is no
vertical temperature difference, so the convection is drivenHere c is the nondimensional temperature gradient,
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TABLE I

Critical Rayleigh and Wave Numbers

RH RV a 5 m

114.20 100 9.56398
120.05 75 9.99614
125.11 50 10.3557
133.73 0 10.8870
135.28 210 11.0463

by the horizontal temperature distribution only. We see
below that convection is possible even when RV , 0, i.e.,
when the fluid is heated from above; this is not so surprising

FIG. 2. Plots of Q1(z): open circle (s), RV 5 100; plus (1), RV 5when one recalls convection in a slot can be driven by
75; cross (3), RV 5 50; triangle (n), RV 5 0; filled circle (d), RV 5 210.differentially heated sidewalls. Also, we find the onset of

instability is with k 5 0, agreeing with Nield’s [14] analysis.
Some values for the onset of convection are given in Ta-

interesting in each case. The Chebyshev method yields asble I.
many eigenvalues as one wishes and so we present belowIn Figs. 1 and 2 the eigenfunctions W(z) and Q(z) corre-
the first two for two representative values for a value ofsponding to those values in Table I are presented. We
RV close to that discussed by Nield.could produce a sketch of the streamfunctions as is done

In Figs. 3 and 4 the eigenfunctions (W1 , Q1), (W2 , Q2)by Nield [14], but this is easily visualised with the aid of
corresponding to s1 and s 2 are presented. Nield does notEquation (21) of [14]. From Figs. 1 and 2 it is evident that
give Q graphs. We stress that with the Chebyshev methodthe eigenfunction W1 5 W(z) is an odd function across
it is easy to generate as many eigenvalues and eigenfunc-the layer for RV 5 100, 75, 50, while it is even for RV 5
tions as we wish. For both Figs. 3 and 4 the functions W1 ,0, 210. It ought to be observed that the curve for RV 5
Q1 are odd functions of z (about z 5 As) while W2 , Q2 are75 is negative when z [ (0, 0.5), but since the problem is
even. The function W2 in Fig. 3 is actually negative whenlinear we may take it to have the opposite sign. The same
z [ [0.49, 0.51], withqualitative behaviour is true of the temperature eigenfunc-

tion Q(z). The function W is actually negative in the region
W2(0.5) 5 20.17532 3 1022;z [ [0.45, 0.55] when RV 5 0 and when RV 5 210.

Nield [14] remarks that for RH 5 110 he sees two nearby W2(0.49) 5 W2(0.51) 5 20.12513 3 1022,
eigenvalues and the eigenfunction for W is different and

whereas in Fig. 4 W2 is always positive, the minimum in
the interior of the layer being

W2(0.5) 5 0.23081 3 1021.

Numerical Comparison of the Compound Matrix and
Chebyshev Tau Methods

We present a numerical comparison of the two methods
for the system (4.2), (4.3). The results of Table I involve

TABLE II

Values of si for the First Two Eigenvalues

RV s1
i s2

i

50 0 20.10729
FIG. 1. Plots of W1(z): open circle (s), RV 5 100; plus (1), RV 5 100 0 20.50695

75; cross (3), RV 5 50; triangle (n) RV 5 0; filled circle (d), RV 5 210.
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TABLE III

The Real Part of the Leading Eigenvalue s(1) against the
Tolerances Odetol and Sectol: RH 5 114.2, RV 5 100, k 5 0,
m 5 10

s(1)
r Odetol Sectol

20.2934327661 10214 1028

20.2934327663 10212 1028

20.2934327680 10210 1028

20.2934332109 1028 1028

20.2934327661 10214 1026

20.2934327663 10212 1026

20.2934327680 10210 1026

20.2934332109 1028 1026

20.2934327661 10214 1024

20.2934327662 10212 1024

20.2934327680 10210 1024FIG. 3. Plots of first two eigenfunctions, RV 5 50: open circle (s),
20.2934332109 1028 1024W1 ; plus (1), W2 ; cross (3), Q1 ; triangle (n), Q2 .
20.2934327658 10214 1022

20.2934327659 10212 1022

20.2934327676 10210 1022

20.2934332106 1028 1022optimization in the wavenumbers k and m and the accuracy
of the results given there is effectively controlled by the
accuracy we demand of the optimization routine. Thus, to
see directly how the compound matrix and Chebyshev tau

TABLE IVmethods compare we present results for (4.2) and (4.3)
with k, m, RH , RV fixed, and we then determine s. The Real Part of the Leading Eigenvalue s(1) against the

Table III represents values obtained by the compound Number of Polynomials N
matrix method. The tolerances odetol and sectol represent

s (1)
r W N

r QN
r Nthe accuracy required of the ODE solver and the secant

method, respectively. It is seen that the ODE tolerance
20.2911367321 20.266737 3 1022 20.338933 3 1022 12

must be kept small. 20.2934457207 0.615707 3 1024 0.234320 3 1023 16
Tables IV to VI were obtained via the Chebyshev tau 20.2934327257 20.556424 3 1026 20.422922 3 1025 20

20.2934327661 0.525455 3 1029 0.308362 3 1027 24method. For the values chosen the eigenfunction corre-
20.2934327661 0.129031 3 10210 20.481852 3 10210 28sponding to s(1) is real and odd and the t coefficients are
20.2934327661 20.700439 3 10213 20.258404 3 10212 32such that ut1u 5 ut̂1u 5 0. The eigenvector which solves (4.5)
20.2934327661 0.295135 3 10215 0.140087 3 10214 36

is normalised such that the sum of squares of the moduli
Note. Here W N

r is the Nth coefficient of the eigenvector representing
W (1) and QN

r has a similar meaning for Q(1): RH 5 114.2, RV 5 100, k 5

0, m 5 10.

TABLE V

The Real Part of the Leading Eigenvalue s(1) and the
Coefficients ut2u and ut̂2u, Defined after (3.6)

s (1)
r ut2u ut̂2u N

20.2911367321 0.177958 0.896724 12
20.2934457207 0.234529 3 1022 0.216143 3 1021 16
20.2934327257 0.175721 3 1025 0.213237 3 1023 20
20.2934327661 0.157964 3 1026 0.284395 3 1026 24
20.2934327661 0.101174 3 1028 0.438053 3 1028 28
20.2934327661 0.159340 3 10211 0.266255 3 10210 32
20.2934327661 0.172756 3 10213 0.425269 3 10214 36

FIG. 4. Plots of first two eigenfunctions, RV 5 100: open circle (s), Note. N is the number of polynomials; RH 5 114.2, RV 5 100, k 5 0,
m 5 10.W1 ; plus (1), W2 ; cross (3), Q1 ; triangle (n), Q2 .
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TABLE VI w 5 u 5 0, (4.7)

The Real Part of the Ninth Eigenvalue s(9) against the
Number of Polynomials N; RH 5 114.2, RV 5 100, k 5 0, where the functions (ui , u, f) satisfy a plane tiling planform
m 5 10 in the (x, y) plane. A typical ‘‘periodic cell’’ so formed is

denoted by V.
s(9)

r N We shall here deal only with an energy analysis which
multiplies (4.6)1 by ui and (4.6)3 by u, although a sharper20.1489144316 3 104 12
stability boundary may possibly be derived with a more20.8984095537 3 103 16

20.8927935821 3 103 20 general analysis, cf. [20]. In the ensuing analysis we need
20.8927979712 3 103 24 the relations
20.8927979750 3 103 28
20.8927979750 3 103 32
20.8927979750 3 103 36 kuiu,iul 5 0,

KUu
u

xL5 0,
(4.8)

of the components equals one and the component of largest
as may be shown by integrating by parts and use of themodulus is real. The convergence is evident from Tables
boundary conditions. Here k?l denotes integration over aIV and V, where also the t coefficients are given. We
period cell V of the perturbation solution. Due to (4.8)2 theremark that a very useful convergence indicator is simply
base velocity U(z) is lost in the resulting energy eigenvaluethe eigenvector yielded by the QZ algorithm, as is evident
problem. It may well be that a more sophisticated energyfrom Table IV. Table VI is included to show convergence
analysis employing a weight, or even a weighted Lp func-of a higher eigenvalue.
tional, will retain U and yield a sharper result. We do notIt is clearly seen that s(1) has converged to 10 digits with
pursue this matter here; weighted and generalised energy24 polynomials, whereas s(9) requires 28. The agreement
methods are discussed in several contexts pertaining tobetween the two methods is perfect for large enough
convection in fluids and in porous media in [20].ODE tolerance.

Let now i?i denote the L2(V) norm. The energy identities
we obtain from (4.6) areThe Eigenvalue Problem of Nonlinear Energy Stability

Theory for Nield’s Inclined Temperature Gradient
iui2 5 kuwl (4.9)Problem

We remark that the methods discussed here may be
andapplied to solve the eigenvalue problem which arises with

a nonlinear energy stability analysis of a porous convection
problem. To give an example of this we briefly consider 1

2
d
dt

iui2 5 RHkuul 2 k(DT )wul 2 i=ui2. (4.10)
such an analysis for the problem under investigation in
this subsection. Since the goal of this paper is not to discuss

Equation (4.10) is added to l times (4.9) for a positiveenergy methods explicitly we stress that we do not here
constant l which may be judiciously selected to obtain theattempt to obtain the best nonlinear energy stability result;
sharpest stability boundary. Let us denote by E(t), I(t),i.e., we do not optimize the energy problem.
and D(t),The nondimensionalised fully nonlinear perturbation

equations for (4.1) may be derived using Nield’s [14] theory
and are E(t) 5 Asiui2, (4.11)

I(t) 5 RHkuul 2 k(DT )wul 1 l kuwl, (4.12)

D(t) 5 i=ui2 1 liui2. (4.13)
f,i 5 2ui 1 di3u,

ui,i 5 0,

u,t 1 uiu,i 5 RHu 2 U
u

x
2

dT
dz

w 1 Du,

(4.6)
The resulting energy equation is

dE
dt

5 I 2 D, (4.14)
where the spatial domain is the three-dimensional layer
z [ (2As, As), and this perturbation is subject to the bound-
ary conditions and if we define L by
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W 5 Q 5 0, z 5 6As. (4.21)1
L

5 max
H

I
D

, (4.15)

Unlike the eigenvalue problem in linear stability, s is
where H is the space of admissible solutions, then from not present. Instead we fix RH , k, m and solve for RV . Of
(4.14) we derive course, RV must be real. This is so because Eqs. (4.20)

arise from the variational problem (4.15), although it may
be seen directly by assuming RV [ C. Then multiplyingdE

dt
# 2D(1 2 L21). (4.16)

(4.20)1 by W* (complex conjugate), (4.20)2 by Q*, and
integrating over (2As, As). If we add the results and take the

From Poincaré’s inequality there exists a positive constant imaginary part we obtain
j such that

Asa2[kQW*l 1 kWQ*l]Ri
V 5 0, (4.22)

D $ jE,

where k?l denotes integration over (2As, As) and RV 5
so that, provided Rr

V 1 iRi
V . The coefficient of Ri

V in (4.22) is real and, so,
unless Wr , Qr and Wi , Qi (the real and imaginary parts of

L , 1, (4.17) W and Q) are orthogonal then RV [ R. (If RH 5 0 we can
show they are not orthogonal and evidently a continuation

from (4.16) we may show argument extends this to the general case.)
To completely determine the energy stability threshold

we should now carry out the optimizationE(t) # E(0) exp F2
j

L
(1 2 L)tG . (4.18)

Ropt
V 5 max

l
min
k,m

RV(k, m; l),
Inequality (4.18) guarantees strong decay of all distur-
bances and thus (4.17) is a criterion for unconditional (i.e.,

on the leading eigenvalue RV of (4.20). For the linear prob-for all initial data) nonlinear energy stability.
lems we have conveniently carried out not dissimilar opti-To use (4.17) we must solve (4.15) and the Euler–
mizations using the compound matrix method. In the tablesLagrange equations for this are
below we present some results for the leading eigenvalue
RV for fixed k, m, l obtained with the Chebyshev schemeL[RHudi1 2 (DT )udi3 1 ludi3] 2 2lui 5 f,i ,
solving the matrix problem

ui,i 5 0, (4.19)

(Ar 1 iAi)x 5 RV(Br 1 iBi)x,L[RHu 2 (DT )w 1 lw] 1 2 Du 5 0,

where x 5 (W0 , ..., WN , Q0 , ..., QN), andwhere f is here a Lagrange multiplier which arises due to
the constraint (4.19)2 . The function f is eliminated from
(4.19) and normal modes are introduced as in (4.2); L is
chosen equal to one as this is the threshold and then we
derive the system of equations: Ar 5 1 D2 2 a2I

1
2

a2S1 2
R2

H

24l
D I 1

R2
Ha2z2

16l

Sl

2
2

R2
H

48D I 1
R2

Hz2

16
D2 2 a2I 1

R2
Hm2

4la2 I 2
(D2 2 a2)W 1

1
2

a2[1 2 l21(DT )]Q 1
1
2

ikl21RHDQ 5 0,

(D2 2 a2)Q 1
1
2

(l 2 DT )W 1
ik
2a2 RHDW 1

R2
Hm2

4la2 Q 5 0.
Ai 5 1 0

kRH

2l
D

kRH

2a2 D 0 2(4.20)

Recall that

DT 5 2RV 1 R2
H S 1

24
2

1
2

z2D , Br 5 1 0 2
a2

2l
I

2
1
2

I 0 2
(4.20) are defined on z [ (2As, As), and
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TABLE VII to avoid roundoff error due to growth of the matrix coeffi-
cients. Such problems are important as is indicated in theRV against N
work and references of Pearlstein et al. [18], Straughan

RV N and Walker [23]. Also, we can extend the method to more
than one space dimension; such problems are again of

44.24040165 10 importance (see, e.g., Kim and Pearlstein [8], Zebib [26]).
44.24040292 12

When very large systems are encountered as they are when44.24040294 14
many constituents are present and the systems are stiff, or

Note. Here RH 5 20, k 5 0, m 5 3.15, l 5 49.5. higher dimensions are considered, e.g., [8, 26], then the
matrices become large and are precisely the domain for
application of software libraries, such as ScaLAPACK,
Dongarra and Walker [3], on massively parallel computers.

with Bi 5 0 and where we have converted to the Chebyshev The present writers are exploiting this to solve other prob-
domain (21, 1). lems in hydrodynamic stability such as the Poiseuille flow

With N 5 60, RH 5 114.2, k 5 0, m 5 18, l 5 100 we problem with many constituents, a problem of importance
find RV 5 16.8324. Of course, this is far from the linear in stellar atmospheres and in the stratosphere. Such prob-
value of RV 5 100, but no optimization has been performed. lems are inevitably difficult and certainly lead to difficult

Tables VII and VIII refer to the energy eigenvalue prob- eigenvalue problems. However, we have found the rapid
lem (4.20). Table VII demonstrates convergence in N. The convergence of Chebyshev polynomials to be extremely
value for RV with N 5 14 in Table VII was verified with useful and coupled to the ScaLAPACK software, which
N 5 20, 30, 40, 50, 60. Nield [14] gives a value of RV 5 is capable of solving very large linear algebra problems,
49.56 as the critical value according to linear theory and should prove capable of handling complicated and large
so Table VII shows that energy theory is likely to be very stability problems.
sharp for RH not too large.

2. The Chebyshev method is ideally suited to tackle
Remarks. While we have only presented one represen- a problem such as the one of Nield et al. [16]. These writers

tative problem in this section we could easily have included tackle a problem analogous to the one discussed in Section
many more, including new convection studies. For exam- 4; however, a salt field is also present and this too is subject
ple, we could treat convection in snow, Powers et al. [19]; to a horizontal variation on the boundaries. The eigenvalue
anisotropic porous convection, Straughan and Walker [22]; problem will inevitably again be very sensitive to parame-
or several other novel problems of convection discussed ter changes and will be essentially of sixth order. We advo-
in the texts of Nield and Bejan [15], and Straughan [20, 21]. cate the method outlined here for obtaining accurate re-

sults for this problem and others like it.
5. CONCLUDING REMARKS

3. While both methods advocated here are very ac-
1. It is important to realize that the Chebyshev curate a few words of comparison are in order. The com-

method extends to arbitrarily large systems which may pound matrix method is particularly easy to change from
be found when many constituents are present and even problem to problem, usually requiring change in only one
chemical reactions are taking place; we do, however, advo- subroutine, that containing the differential equations for
cate arranging the systems of differential equations in such the y’s. Also, different boundary conditions are easily in-
a way that no derivatives higher than second-order appear corporated with the compound matrix method. Since only

one eigenvalue is tracked the compound matrix method
may be quicker if optimization in other parameters is re-
quired. The Chebyshev technique, on the other hand, is

TABLE VIII
especially easy to utilize to generate eigenfunctions. In

Variation of RV with m and l addition, the Chebyshev approach is easy to extend to
higher order systems. For problems where mode crossing

RV m l
is experienced; i.e., the eigenvalue which is dominant in
one area of parameter space is replaced by another in44.24963830 2.8 49.5

44.12615768 2.9 49.5 moving to some other domain of parameter space, then a
44.10418487 3.0 49.5 technique like the Chebyshev one, which yields all eigen-
44.17389530 3.1 49.5 values, is vital. Such mode crossing in actual physical prob-
44.12894795 3.0 49.0

lems is encountered in [2, 18, 23]. A final point is that the44.15097589 3.0 48.5
Chebyshev tau method is particularly suitable for eigen-
value problems, where the differential equation containsNote. RH 5 20, k 5 0, N 5 30.
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